Bayesian optimization of variable-size design space problems
نویسندگان
چکیده
منابع مشابه
Multiobjective Optimization of Mixed Variable Design Problems
In this paper, a new multiobjective genetic algorithm is employed to support the design of a hydraulic actuation system. First, the proposed method is tested using benchmarks problems gathered from the literature. The method performs well and it is capable of identifying multiple Pareto frontiers in multimodal function spaces. Secondly, the method is applied to a mixed variable design problem w...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملVariable mesh optimization for continuous optimization problems
Population-based meta-heuristics are algorithms that can obtain very good results for complex continuous optimization problems in a reduced amount of time. These search algorithms use a population of solutions to maintain an acceptable diversity level during the process, thus their correct distribution is crucial for the search. This paper introduces a new population meta-heuristic called ‘‘var...
متن کاملDesign Space Reduction for Multi-objective Optimization and Robust Design Optimization Problems
Modern engineering design often involves computation-intensive simulation processes and multiple objectives. Engineers prefer an efficient optimization method that can provide them insights into the problem, yield multiple good or optimal design solutions, and assist decision-making. This work proposed a rough-set based method that can systematically identify regions (or subspaces) from the ori...
متن کاملPractical Bayesian Optimization for Variable Cost Objectives
We propose a novel Bayesian Optimization approach for black-box functions with an environmental variable whose value determines the tradeoff between evaluation cost and the fidelity of the evaluations. Further, we use a novel approach to sampling support points, allowing faster construction of the acquisition function. This allows us to achieve optimization with lower overheads than previous ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization and Engineering
سال: 2020
ISSN: 1389-4420,1573-2924
DOI: 10.1007/s11081-020-09520-z